Adaptive deadband control of a drifting process with unknown parameters
نویسندگان
چکیده
Adjusting a drifting process to minimize the expected sum of quadratic off-target and fixed adjustment costs is considered under unknown process parameters. A Bayesian approach based on sequential Monte Carlo methods is presented. The benefits of the resulting ‘‘deadband’’ adjustment policy are studied. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Indirect Adaptive Robust Control of Uncertain Systems with Unknown Asymmetric Input Deadband Using a Smooth Inverse
In this paper, we present an indirect adaptive robust controller (IARC) for output tracking of a class of uncertain nonlinear systems with unknown input asymmetric deadband in presence of uncertain nonlinearities and parametric uncertainties. Most of the parameter adaptation algorithms, such as, gradienttype and least squares-type require that the unknown parameters of a system appear in affine...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملRobust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque
In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کاملSetup Adjustment Under Unknown Process Parameters and Fixed Adjustment Cost
Consider a machine that can start production off-target where the initial offset is unknown and unobservable. The goal is to determine the optimal series of machine adjustments that minimize the expected value of the sum of quadratic off-target costs and fixed adjustment costs. Apart of the unknown initial offset, the process is supposed to be in a state of statistical control, so the process m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006